Definición de minería de datos
Conceptos de minería de datos
La minería de datos es el proceso de detectar la información procesarle de los conjuntos grandes de datos. Utiliza el análisis matemático para deducir los patrones y tendencias que existen en los datos. Normalmente, estos patrones no se pueden detectar mediante la exploración tradicional de los datos porque las relaciones son demasiado complejas o porque hay demasiado datos.
Estos patrones y tendencias se pueden recopilar y definir como un modelo de minería de datos. Los modelos de minería de datos se pueden aplicar en escenarios como los siguientes:
Pronóstico: cálculo de las ventas y predicción de las cargas del servidor o del tiempo de inactividad del servidor.
Riesgo y probabilidad: elección de los mejores clientes para la distribución de correo directo, determinación del punto de equilibrio probable para los escenarios de riesgo, y asignación de probabilidades a diagnósticos y otros resultados.
Recomendaciones: determinación de los productos que se pueden vender juntos y generación de recomendaciones.
Búsqueda de secuencias: análisis de los artículos que los clientes han introducido en el carrito de la compra y predicción de posibles eventos.
Agrupación: distribución de clientes o eventos en grupos de elementos relacionados, y análisis y predicción de afinidades.
La generación de un modelo de minería de datos forma parte de un proceso mayor que incluye desde la formulación de preguntas acerca de los datos y la creación de un modelo para responderlas, hasta la complementación del modelo en un entorno de trabajo. Este proceso se puede definir mediante los seis pasos básicos siguientes:
-
-
-
-
-
-
El siguiente diagrama describe las relaciones existentes entre cada paso del proceso y las tecnologías de Microsoft SQL Server que se pueden usar para completar cada paso.
El proceso que se ilustra en el diagrama es cíclico, lo que significa que la creación de un modelo de minería de datos es un proceso dinámico e iterativo. Una vez que ha explorado los datos, puede que descubra que resultan insuficientes para crear los modelos de minería de datos adecuados y que, por tanto, debe buscar más datos. O bien, puede generar varios modelos y descubrir entonces que no responden adecuadamente al problema planteado cuando los definió y que, por tanto, debe volver a definir el problema. Es posible que deba actualizar los modelos una vez implementados debido a que haya más datos disponibles. Puede que haya que repetir cada paso del proceso muchas veces para crear un modelo adecuado.
La minería de datos de Microsoft SQL Server ofrece un entorno integrado para crear y trabajar con modelos de minería de datos. Este entorno incluye SQL Server Development Studio, que contiene algoritmos de minería de datos y herramientas de consulta que facilitan la generación de una solución completa para una serie de proyectos, y SQL Server Management Studio, que contiene herramientas que permiten examinar modelos y administrar objetos de minería de datos. Para obtener más información, vea Crear modelos multidimensionales al usar las herramientas de datos de SQL Server (SSDT).
Si quiere ver un ejemplo de cómo las herramientas de SQL Server se pueden aplicar en un escenario empresarial, vea Tutorial básico de minería de datos.
No hay comentarios :
Publicar un comentario